432. Проволочная рамка с подвижной перекладиной длиной l1 = 8,0 см затянута мыльной плёнкой. Какую работу против сил поверхностного натяжения надо совершить, чтобы растянуть плёнку на l2 = 2,0 см? Поверхностное натяжение плёнки σ = 4,0∙10-2 Н/м.
Решение: способ 1 (энергетический). При растяжении плёнки, увеличивается площадь свободной поверхности, т.е увеличивается поверхностная энергия. Т.к. энергия системы изменяется (система не замкнута), то совершается работа внешними силами (против сил поверхностного натяжения).
\[ A=\sigma \cdot \Delta S. \]
Изменение площади поверхности плёнки легко определить из следующих соображений: нам известны размеры поверхности l1 и l2, а также, что у плёнки свободных поверхностей две. Тогда:
\[ \begin{array}{l} {\Delta S=2\cdot l_{1} \cdot l_{2\,},} \\ {A=2\cdot \sigma \cdot l_{1} \cdot l_{2\,}.} \end{array} \]
Способ 2 (динамический) на подвижную перекладину действует две силы поверхностного натяжения (у плёнки получается две границы поверхности с перекладиной). Для медленного движения перекладины, приложим внешнюю силу, равную по модулю двум силам поверхностного натяжения.
\[ F=2\cdot F_{n} =2\cdot \sigma \cdot l_{1}. \]
Работа постоянной силы:
\[ \begin{array}{l} {A=F\cdot S\cdot \cos \alpha } \\ {A=2\cdot \sigma \cdot l_{1} \cdot l_{2}.} \end{array} \]
Здесь учли, что перемещение перекладины S = l2, угол между вектором силы и перемещения α = 0 (cosα=1).
Ответ: 1,3∙10-4 Дж