669. В электронно-лучевой трубке сила тока в электронном пучке
I = 600 мкА, ускоряющее напряжение
U = 10 кВ. Найти, с какой силой давит электронный пучок, считая, что все электроны поглощаются экраном.
Решение: для нахождения силы воспользуемся вторым законом Ньютона в импульсном виде
\[ \vec{F}\cdot \Delta t=\Delta \vec{p}, \]
здесь
F – искомая сила, Δ
t – время её действия, Δ
p – изменение импульса электронов. Т.к. все электроны поглощаются экраном, то изменение импульса равно по модулю суммарному импульсу электронов перед столкновением с экраном:
Δp = p =N∙m∙υ,
здесь
m = 9,1∙10
–31 кг – масса электрона, υ – скорость электрона,
N - количество электронов, ударяющихся об экран за время Δ
t.
Количество электронов определим, воспользовавшись понятием силы тока: отношение заряда, прошедшего через сечение проводника (пучка) ко времени его прохождения
\[ \begin{array}{l} {I=\frac{\Delta q}{\Delta t} =\frac{N\cdot e}{\Delta t} ,} \\ {N=\frac{I\cdot \Delta t}{e},} \end{array} \]
здесь
e = 1,6∙10
–19 Кл – элементарный заряд (модуль заряда электрона). Скорость электронов определим, воспользовавшись теоремой о кинетической энергии: изменение кинетической энергии тела равно работе сил, действующих на него. В нашем случае электроны проходят ускоряющее напряжение, т.е. работу по разгону электронов совершает электрическое поле (
A = e∙U). Т.к. нет специальных оговорок, то начальную кинетическую энергию электронов будем считать равной нулю, тогда
\[ \begin{array}{l} {\Delta E_{k} =E_{k} =A,} \\ {\frac{m\cdot \upsilon ^{2} }{2} =e\cdot U,} \\ {\upsilon =\sqrt{\frac{2\cdot e\cdot U}{m} } .} \end{array} \]
Искомая сила
\[ \begin{array}{l} {F=\frac{\Delta p}{\Delta t} =\frac{N\cdot m\cdot \upsilon }{\Delta t} =\frac{I\cdot \Delta t}{e} \cdot \frac{m}{\Delta t} \cdot \sqrt{\frac{2\cdot e\cdot U}{m}},}\\{F=I\cdot \sqrt{\frac{2\cdot m\cdot U}{e}}.}\end{array} \]
Ответ: 2∙10
–7 Н.