293. Деревянный брусок находится на наклонной плоскости. С какой наименьшей силой F нужно прижать брусок к наклонной плоскости, чтобы он оставался на ней в покое? Масса бруска m = 2,0 кг, длина наклонной плоскости l = 1,0 м, высота ее h = 0,60 м. Коэффициент трения бруска о наклонную плоскость μ = 0,40.
Решение.
На брусок действуют силы тяжести mg, нормальной реакции опоры N, трения F
tr и искомая сила F. Так как брусок покоится, то
\[ {{\vec{F}}_{tr}}+\vec{F}+m\cdot \vec{g}+\vec{N}=0 \]
В проекциях на оси координат
Ох: Ftr = m·g sinα;
Oy: N = F + m·g·cosα
С учетом того , что F
tr = μ·N
\[ \begin{align}
& {{F}_{tr}}=\mu \cdot N=\mu \cdot \left( F+m\cdot g\cdot \cos \alpha \right)=m\cdot g\cdot \sin \alpha \\
& F=\frac{m\cdot g\cdot \left( \sin \alpha -\mu \cdot \cos \alpha \right)}{\mu } \\
\end{align}
\]
Синус угла – отношение противолежащего катета к гипотенузе, косинус – отношение прилежащего катета к гипотенузе. Тогда, как видно из рисунка
\[ \sin \alpha =\frac{h}{l};\cos \alpha =\frac{\sqrt{{{l}^{2}}-{{h}^{2}}}}{l} \]
Окончательно
\[ F=\frac{m\cdot g}{\mu }\left( \frac{h}{l}-\frac{\mu \cdot \sqrt{{{l}^{2}}-{{h}^{2}}}}{l} \right)=\frac{m\cdot g}{\mu \cdot l}\cdot \left( h-\mu \cdot \sqrt{{{l}^{2}}-{{h}^{2}}} \right) \]
Ответ 14 Н