864. Предмет и его прямое изображение, создаваемое тонкой линзой, расположены симметрично относительно фокуса линзы. Расстояние от предмета до фокуса линзы l = 4,0 см. Найти фокусное расстояние линзы.
Решение: возможно два варианта – линза собирающая, изображение мнимое, либо линза рассеивающая, и изображение также мнимое. Пусть f – расстояние от линзы до изображения, d – расстояние между линзой и предметом, F – фокусное расстояние линзы. Рассмотрим оба случая по порядку.
Линза собирающая. Изображение будет прямым (и мнимым) только в одном случае – если расстояние между линзой и предметом меньше фокусного, т.е. d < F. Тогда d = F – l и f = F + l. Подставим в формулу тонкой линзы, и после преобразований получим квадратное уравнение
\[ \begin{array}{l} {\frac{1}{F} =\frac{1}{d} -\frac{1}{f} =\frac{1}{F-l} -\frac{1}{F+l} =\frac{2l}{F^{2} -l^{2} } ,} \\ {F^{2} -2l\cdot F-l^{2} =0.} \end{array} \]
Линза рассеивающая. Изображение прямое (мнимое, и при этом симметричное предмету относительно фокуса) может быть только в одном случае – если расстояние между линзой и предметом больше фокусного, т.е. d > F. Тогда d = F + l и f = F – l. Подставим в формулу тонкой линзы, и после преобразований получим квадратное уравнение
\[ \begin{array}{l} {-\frac{1}{F} =\frac{1}{d} -\frac{1}{f} =\frac{1}{F+l} -\frac{1}{F-l} =\frac{-2l}{F^{2} -l^{2} } ,} \\ {F^{2} -2l\cdot F-l^{2} =0.} \end{array} \]
Как видим, в обоих случаях получились одинаковые уравнения. Найдём корни этого уравнения и учтём, что F величина неотрицательная (правило знаков учли, при записи формулы линзы), т.е оставим только положительный корень квадратного уравнения
\[ \begin{array}{l} {F^{2} -2l\cdot F-l^{2} =0,} \\ {D=4l^{2} +2l^{2} =8l^{2} ,} \\ {F_{1,2} =\frac{2l\pm 2\sqrt{2} \cdot l}{2} =\left(1\pm \sqrt{2} \right)\cdot l,} \\ {F=\left(1+\sqrt{2} \right)\cdot l.} \end{array} \]
Так как принято считать фокусное расстояние рассеивающих линз величиной отрицательной, а у собирающих – положительной, то объединяя два случая, получаем
\[ F=\pm \left(1+\sqrt{2} \right)\cdot l. \]
Ответ: ± 9,6 см. (√2 ≈ 1,41)