Рассмотрим одни из способов. Перейдем с систему отсчета, связанную с сосудом. В этой неинерциальной системе на воду будет дополнительно действовать сила инерции
Fi, направленная в противоположную сторону ускорения сосуда. Так как жидкость теперь находится не только в поле силы тяжести, то поверхность жидкости будет перпендикулярна вектору
эффективного ускорения свободного падения
g* (рис. 1), где
\[ \vec{g}*=\vec{g}+\vec{a}_{i}, \; \; \; \vec{a}_{i} =-\vec{a}\; - \]
ускорение воды, вызванное силой инерции.
Угол наклона жидкости найдем из треугольника ускорений (см. рис. 1):
\[ tg\alpha =\frac{a_{i} }{g} =\frac{a}{g}. \]
Примечание. Подробнее об эффективном ускорении можно почитать в статье:
Сакович А.Л. Эффективное ускорение // Фiзiка: праблемы выкладання. – 2011. — № 6. — С. 16-21. (скоро выложу на сайт).
О расчете угла наклона поверхности жидкости в сосуде, движущемся с горизонтальным ускорении, можно почитать здесь:
1) Гринченко Б.И. Как решать задачи по физике. — С-П., 1998. — Задача № 7.4 (три способа решения). (Книгу можно найти в интернете).
2)
Коган Б.Ю. Задачи по физике. – М., «Просвещение», 1971. – Задача № 268.